skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Haofei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Carlito Lebrilla (Ed.)
    The Earth’s atmosphere is composed of an enormous variety of chemical species associated with trace gases and aerosol particles whose composition and chemistry have critical impacts on the Earth’s climate, air quality, and human health. Mass spectrometry analysis as a powerful and popular analytical technique has been widely developed and applied in atmospheric chemistry for decades. Mass spectrometry allows for effective detection, identification, and quantification of a broad range of organic and inorganic chemical species with high sensitivity and resolution. In this review, we summarize recently developed mass spectrometry techniques, methods, and applications in atmospheric chemistry research in the past several years. Specifically, new developments of ion-molecule reactors, various soft ionization methods, and unique coupling with separation techniques are highlighted. The new mass spectrometry applications in laboratory studies and field measurements focus on improving the detection limits for traditional and emerging volatile organic compounds, characterizing multiphase highly oxygenated molecules, and monitoring particle bulk and surface compositions. 
    more » « less
    Free, publicly-accessible full text available July 13, 2024
  2. Free, publicly-accessible full text available May 2, 2024
  3. Nitrogen-containing heterocyclic volatile organic compounds (VOCs) are important components of wildfire emissions that are readily reactive toward nitrate radicals (NO3) during nighttime, but the oxidation mechanism and the potential formation of secondary organic aerosol (SOA) and brown carbon (BrC) are unclear. Here, NO3 oxidation of three nitrogen-containing heterocyclic VOCs, pyrrole, 1-methylyrrole (1-MP), and 2-methylpyrrole (2-MP), was investigated in chamber experiments to determine the effect of precursor structures on SOA and BrC formation. The SOA chemical compositions and the optical properties were analyzed using a suite of online and offline instrumentation. Dinitro- and trinitro-products were found to be the dominant SOA constituents from pyrrole and 2-MP, but not observed from 1-MP. Furthermore, the SOA from 2-MP and pyrrole showed strong light absorption, while that from 1-MP were mostly scattering. From these results, we propose that NO3-initiated hydrogen abstraction from the 1-position in pyrrole and 2-MP followed by radical shift and NO2 addition leads to light-absorbing nitroaromatic products. In the absence of a 1-position hydrogen, NO3 addition likely dominates the 1-MP chemistry. We also estimate that the total SOA mass and light absorption from pyrrole and 2-MP are comparable to those from phenolic VOCs and toluene in biomass burning, underscoring the importance of considering nighttime oxidation of pyrrole and methylpyrroles in air quality and climate models. 
    more » « less